
Using Strings As Case Selectors
The February issue’s Tips & Tricks column included
Michael Ax’s description of using the GetEnumName func-
tion from Delphi’s run time type information (RTTI)
services to retrieve string equivalents of enumeration
type constants. There is also an inverse function called
GetEnumValue which turns a string back into an enu-
meration constant. This function, and a bit of ingenuity,
can effectively give Delphi an ability that it’s not gener-
ally thought to have, namely using strings as case
selectors.

I recently had cause to create a simple macro
language to automate certain text processing tasks. I
originally wrote the engine in the ScriptMaker language
that comes as part of Norton Desktop v3.0, mostly
because it provides SendKeystrokesToWindow and
FindWindowByPartialTitle routines that make manipu-
lating other windows relatively simple. The main rou-
tine of my macro processor is a big “switch” statement
that does different things depending on which macro
command is being processed and is selected by the
name of the command.

When I recently came up with Delphi equivalents to
send keystrokes and find windows, I started planning
to convert the macro processor to Delphi, but quickly
baulked at the prospect of all the nested if statements
to process the commands, because Delphi wouldn’t
allow strings as case selectors. But, why not define an
enumerated type that paralleled the commands in the
macro language, and use GetEnumValue to turn the
strings retrieved from the macro file into enumerated
constants of that type, which could then be used as
part of a case statement! Listing 1 shows the idea.

Note that adding the tmc prefix to the enumerated
constants isn’t strictly necessary, but for this example
it does prevent naming conflicts with Pascal reserved
words. It also ties them together as constants of a
particular type, and serves as a reminder of their
purpose.

I’m sure that there are any number of other ways that
this facility could be put to use, such as case selecting
on the contents of a listbox or a set of radio buttons or
even menu items. Any situation where you have string
values that should remain more or less constant they
can easily be used as case selectors via this method,
saving you the hassle of writing and maintaining your
own conversion function.

Contributed by Stephen Posey, University of New
Orleans, USA, email: SLP@uno.edu

Tips
& Tricks

Changing Printer Parameters
Recently I needed to print out large numbers of the
same label onto sheet laser labels. In order to reduce
download time to print manager, conserve disk space
and program professionally I thought that I would sim-
ply print one page and let the printer driver’s number
of copies feature do the rest.

I sought help from a couple of friends on the
CompuServe Delphi forum, Listing 2 shows what we
came up with. This basic function can be changed to
alter many of the printer driver’s parameters including
paper orientation, custom paper size, input bin and
print quality.

Looking up GetPrinter in the help will reveal abso-
lutely nothing about the DevMode parameter except that
it is of type THandle. It turns out that it is a handle to a
piece of global memory storing a TDevMode record struc-
ture recently obtained from the printer driver. You
must set PrinterIndex before calling GetPrinter other-
wise this handle will be invalid. Once you have a valid
handle you can retrieve a pointer to it by locking it in
memory using the GlobalLock API call. You make your
changes to the record structure and unlock it. Reset-
ting PrinterIndex to itself again causes the TDevMode
record structure to be sent back to the printer driver
for evaluation. The dmFields item in the record struc-
ture indicates which items you want changing. The
constants can be found by looking up TDevMode in the

type
 TMacroCommand = (tmcIF, tmcGOTO, tmcCALL, tmcEND);
var
 S : string;
begin
 GetNextCommand(S); { retrieve next command into S }
 case TMacroComand(GetEnumValue(
 TypeInfo(TMacroCommand), ’tmc’+S)) of
 tmcIF : { do If stuff }
 tmcGOTO : { do Goto Stuff }
 tmcCALL : {etc...}
 end { case } ;
 ...
end;

➤ Listing 1

Uses Printers;
function SetNumCopies(NumCopies : integer) : boolean;
var
 ADevice, ADriver, APort : array[0..255] of char;
 DevMode : THandle;
 PtrDevMode : PDevMode;
begin
 Printer.PrinterIndex := Printer.PrinterIndex;
 Printer.GetPrinter(
 ADevice, ADriver, APort, DevMode);
 if DevMode <> 0 then begin
 PtrDevMode := GlobalLock(DevMode);
 with PtrDevMode^ do begin
 dmFields := dmFields or DM_COPIES;
 dmCopies := NumCopies;
 end;
 GlobalUnlock(DevMode);
 Printer.PrinterIndex := Printer.PrinterIndex;
 SetNumCopies := True;
 end else
 SetNumCopies := False;
end;

➤ Listing 2

62 The Delphi Magazine Issue 9

API help. [If this has whetted your appetite for informa-
tion on printing with Delphi, we have good news: Xavier
Pacheco, of “Delphi Developer’s Guide” fame, is at this
moment preparing a series of articles on printing for your
favourite magazine (aren’t you, Xavier...). Editor]

Contributed by William Thorp, CompuServe
100025,3500

Moving Components To Delphi 2
When recompiling your components developed with
Delphi 1 using Delphi 2, you may receive an error
message ‘Unsupported 16 bit resource in file ...’. Don’t
panic, the most likely cause is that your component has
a .DCR file for the palette bitmap and you forgot to
convert it to 32-bit format. The simplest way to do this
is using Bob Swart’s RESCONV.EXE program included
on this month’s disk in directory CONSTRUC.

Contributed by Paul Warren, hg_soft@uniserve.com

Repacking Paradox Tables
If your application uses Paradox tables it can be very
useful to include an option to allow users to repack the
tables. The function shown in Listing 3 will do just this.
It requires a TDatabase component pointing to the same
directory.

Contributed by Mike Orriss, CompuServe 100570,121

Replacing Controls
If you’ve ever had to replace one type of control on a
form with another, it can be a real pain re-setting all the
properties of the new control to match the one it
replaces. Here’s the easiest way to not lose the values
of properties that are common to both controls:

1) Cut the control to the clipboard,
2) Paste back to the PAS form after the final end. (it will
show as its text form),
3) Modify the text as required,
4) Copy text to the clipboard,
5) Paste to the form as usual,
6) Iterate through 3-5 until it pastes without error!
7) Remove code after final end. to prevent a compiler
warning in Delphi 2.

Contributed by Mike Orriss, CompuServe 100570,121

Dead MaxLength Of DBedit
The MaxLength property of the DBEdit control doesn’t
work as advertised: it’s supposed to control the maxi-
mum number of characters but doesn’t. You can work
around the problem via an OnKeyPress routine:

 procedure TForm1.DBEdit1KeyPress(
 Sender: TObject; var Key: Char);
 const maxl = 4;
 begin
 if Key <> #8 then {allow backspace}
 with Sender as TDBEdit do
 if Length(Text) = maxl then
 Key := #0;
 end;

Contributed by Mike Orriss, CompuServe 100570,121

Lost Cursor
If you lose the cursor after displaying dialogs such as
ShowMessage in an OnExit event, the problem is that you
are issuing commands that change focus inside an
event handler that sets focus, which can cause
recursion. You can use a work-around to handle this by
calling a user-defined message to do all OnExit process-
ing, controlled by a boolean flag that prevents
recursion. The code required is shown in Listing 4.

Contributed by Mike Orriss, CompuServe 100570,121

uses
 DBIProcs, DBITypes, DBIErrs;
function PackTable(
 tbl:TTable; db:TDatabase):DBIResult;
var crtd: CRTblDesc;
begin
 Result := DBIERR_NA;
 with tbl do
 if Active then
 Active := False;
 with db do
 if not Connected then
 Connected := True;
 FillChar(crtd,SizeOf(CRTblDesc),0);
 StrPCopy(crtd.szTblName,tbl.TableName);
 crtd.bPack := True;
 Result := DbiDoRestructure(
 db.Handle,1,@crtd,nil,nil,nil,FALSE);
end;

{Example of use:}
procedure TForm1.Button1Click(Sender: TObject);
begin
 if PackTable(Table1,DataBase1) = DBIERR_NONE then
 ...
 else
 MessageBeep(0);
end;

➤ Listing 3

interface
const
 WM_MyExitRtn = WM_USER + 1001;
type
 TForm1 = class(TForm)
 private
 {prevent message recursion}
 bExitInProgress: Boolean;
 public
 Procedure WMMyExitRtn(Var msg:TMessage);
 message WM_MyExitRtn;
 end;

implementation

procedure TForm1.DBEdit1Exit(Sender: TObject);
begin
 If not bExitInProgress then
 PostMessage(Handle,WM_MyExitRtn,
 0,LongInt(Sender));
end;

procedure TForm1.WMMyExitRtn(var msg:TMessage);
begin
 bExitInProgress := True; { prevent recursive call }
 {user exit code }
 bExitInProgress := False; { clear the flag }
end;

➤ Listing 4

May 1996 The Delphi Magazine 63

	Using Strings As Case Selectors
	Changing Printer Parameters
	Moving Components To Delphi 2
	Repacking Paradox Tables
	Replacing Controls
	Dead MaxLength Of DBedit
	Lost Cursor

